176 research outputs found

    Optimal Gossip with Direct Addressing

    Full text link
    Gossip algorithms spread information by having nodes repeatedly forward information to a few random contacts. By their very nature, gossip algorithms tend to be distributed and fault tolerant. If done right, they can also be fast and message-efficient. A common model for gossip communication is the random phone call model, in which in each synchronous round each node can PUSH or PULL information to or from a random other node. For example, Karp et al. [FOCS 2000] gave algorithms in this model that spread a message to all nodes in Θ(logn)\Theta(\log n) rounds while sending only O(loglogn)O(\log \log n) messages per node on average. Recently, Avin and Els\"asser [DISC 2013], studied the random phone call model with the natural and commonly used assumption of direct addressing. Direct addressing allows nodes to directly contact nodes whose ID (e.g., IP address) was learned before. They show that in this setting, one can "break the logn\log n barrier" and achieve a gossip algorithm running in O(logn)O(\sqrt{\log n}) rounds, albeit while using O(logn)O(\sqrt{\log n}) messages per node. We study the same model and give a simple gossip algorithm which spreads a message in only O(loglogn)O(\log \log n) rounds. We also prove a matching Ω(loglogn)\Omega(\log \log n) lower bound which shows that this running time is best possible. In particular we show that any gossip algorithm takes with high probability at least 0.99loglogn0.99 \log \log n rounds to terminate. Lastly, our algorithm can be tweaked to send only O(1)O(1) messages per node on average with only O(logn)O(\log n) bits per message. Our algorithm therefore simultaneously achieves the optimal round-, message-, and bit-complexity for this setting. As all prior gossip algorithms, our algorithm is also robust against failures. In particular, if in the beginning an oblivious adversary fails any FF nodes our algorithm still, with high probability, informs all but o(F)o(F) surviving nodes

    Maximal Extractable Value (MEV) Protection on a DAG

    Get PDF
    Many cryptocurrency platforms are vulnerable to Maximal Extractable Value (MEV) attacks [Daian et al., 2020], where a malicious consensus leader can inject transactions or change the order of user transactions to maximize its profit. A promising line of research in MEV mitigation is to enhance the Byzantine fault tolerance (BFT) consensus core of blockchains by new functionalities, like hiding transaction contents, such that malicious parties cannot analyze and exploit them until they are ordered. An orthogonal line of research demonstrates excellent performance for BFT protocols designed around Directed Acyclic Graphs (DAG). They provide high throughput by keeping high network utilization, decoupling transactions\u27 dissemination from their metadata ordering, and encoding consensus logic efficiently over a DAG representing a causal ordering of disseminated messages. This paper explains how to combine these two advances. It introduces a DAG-based protocol called Fino, that integrates MEV-resistance features into DAG-based BFT without delaying the steady spreading of transactions by the DAG transport and with zero message overhead. The scheme operates without complex secret share verifiability or recoverability, and avoids costly threshold encryption

    Lessons from HotStuff

    Full text link
    This article will take you on a journey to the core of blockchains, their Byzantine consensus engine, where HotStuff emerged as a new algorithmic foundation for the classical Byzantine generals consensus problem. The first part of the article underscores the theoretical advances HotStuff enabled, including several models in which HotStuff-based solutions closed problems which were opened for decades. The second part focuses on HotStuff performance in real life setting, where its simplicity drove adoption of HotStuff as the golden standard for blockchain design, and many variants and improvements built on top of it. Both parts of this document are meant to describe lessons drawn from HotStuff as well as dispel certain myths

    Byzantine quorum systems

    Full text link

    The julia content distribution network

    Get PDF
    Abstract — Peer-to-peer content distribution networks are currently being used widely, drawing upon a large fraction of the Internet bandwidth. Unfortunately, these applications are not designed to be network-friendly. They optimize download time by using all available bandwidth. As a result, long haul bottleneck links are becoming congested and the load on the network is not well balanced. In this paper, we introduce the Julia content distribution network. The innovation of Julia is in its reduction of the overall communication cost, which in turn improves network load balance and reduces the usage of long haul links. Compared with the state-of-the-art BitTorrent content distribution network, we find that while Julia achieves slightly slower average finishing times relative to BitTorrent, Julia nevertheless reduces the total communication cost in the network by approximately 33%. Furthermore, the Julia protocol achieves a better load balancing of the network resources, especially over trans-Atlantic links. We evaluated the Julia protocol using real WAN deployment and by extensive simulation. The WAN experimentation was carried over the PlanetLab wide area testbed using over 250 machines. Simulations were performed using the the GT-ITM topology generator with 1200 nodes. A surprisingly good match was exhibited between the two evaluation methods (itself an interesting result), an encouraging indication of the ability of our simulation to predict scaling behavior. I
    corecore